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SUMMARY

A numerical method based on the streamfunction–vorticity formulation is applied to simulate the two-
dimensional, transient, viscous �ow with a free surface. This method successfully uses the locally re,ned
grid in an inviscid–viscous model to explore the processes of vortex formation due to a solitary wave
passing over a submerged blu9 body. The two particular bodies considered here are a blunt rectangular
block and a semicircular cylinder. Flow visualization to track dyelines is carried out in the laboratory
in order to con,rm the validity of the numerical results. Numerical results examined by di9erent grid
con,gurations ensure the locally re,ned grid to be useful in practical application. Flow phenomena,
including the vortex motion and wave patterns during non-linear wave–structure interaction, are also
discussed. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The characteristics of a non-linear, long wave interacting with a hydraulic structure are im-
portant to many coastal problems. An incident solitary wave upon a submerged structure in
the shallow water region has been studied [1–4] using the weakly non-linear, long wave
equations in recent years. To avoid the tedious higher-order correction to these simpli,ed
equations, some researchers [5–8] have chosen to study the full non-linear equations in-
stead. Nevertheless, these investigations apparently contribute less in studying �ows with
viscous e9ects, in association with blunt body shape, shallow submergence of the structure
interacted with a large-amplitude wave in shallow water. To analyze viscous e9ects on
wave–structure interaction, a numerical method based on the streamfunction–vorticity
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( –!) formulation was developed to ally with a boundary ,tted grid system. Using this
accurate method with a globally ,ne grid, the authors [9] succeeded in exploring not only the
free-surface evolution but also the entire �ow pattern. These include the �ow separation from
a solid surface, vortex-free surface interaction, wave radiation, etc.; all induced by a large
solitary wave passing over a high blu9 body. Although the application of streamfunctions to
a three-dimensional �ow is still possible [10], the  –! formulation is more convenient and
believably optimal for the two-dimensional viscous �ow coupled with complicated conditions
on the irregular boundaries, as compared with other viscous models. However, the formulation
is not yet the most economic in computations because a uni,ed viscous model with a globally
,ne grid is applied in the whole region, as was used by the referred article [9].
Within the entire computational domain, solution accuracy may request a ,ne grid only in

a small region where steep gradients in physical variables appear. For example, the boundary
layer near a solid surface and the free surface region for wave problems are just a couple of
such regions. The former is obvious without further explanations and the latter has its own
reasons based on physics. As a rule of thumb, a regular periodic wave pro,le usually needs
at least ten nodes within a wavelength to resolve its shape and describe its transience on
the free surface. On the other hand, a coarser grid applied in most �ow regions is prefer-
able from a computer economics standpoint. To avoid compromising solution accuracy for
computer economics or vice versa, one may use the local grid re,nement technique in the
analysis instead of using a globally ,ne grid in the whole domain. This technique has been
proved to be eIcient in calculating many �ow problems [11–18]. As to the water wave
problems, the authors also veri,ed the local grid re,nement technique to be useful in simu-
lating the solitary wave train generated by a submerged body accelerated in an inviscid �uid
[19].
In the present study, the ,ner grids are locally embedded along the free surface and in the

vicinity of the blu9 body, and a coarser base grid is widely distributed in the most other region.
Moreover, a viscous–inviscid hybrid model is also considered. In order to grasp the most
physical signi,cance and reduce CPU time, both the viscous �ow solution and the inviscid
�ow solution are calculated independently in various regions by using di9erent numerical
methods with their own meshes, as will be described later. Then both solutions are matched
to construct a complete one such that all variables at the region interfaces are continuous.
With these techniques, the present hybrid model can eIciently resolve the complete physical
phenomena, with the same accuracy as in the previous work [9], which solved the entire
viscous solution in a globally ,ne grid system. To exhibit the feasibility of the proposed
numerical method, this paper investigates two di9erent submerged blu9 structures, namely
a rectangular block and a semicircular cylinder. The former structure is also studied in the
laboratory by the physical model test. Flow visualized by colored dyelines (streaklines) around
the block is photographed to verify the numerical result. In the numerical simulation the
trajectory of massless Lagrangian particles is tracked down in the �ow ,eld by the inverse
mapping method in the computational domain. In all, several objectives are worth emphasizing
in the proposed numerical method: (i) to develop the technique of local grid re,nement
together with the inviscid–viscous �ow model; (ii) to perform grid re,nement in an evolving
boundary conformed grid system for unsteady free-surface �ow problems; (iii) to use a hybrid
grid system in combination with the stationary and the moving grids for strong wave–structure
interaction problems; and (iv) to demonstrate the visualized �ow pattern by using the inverse
particle tracing technique.
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VORTEX MOTION DUE TO SOLITARY WAVE 611

2. MATHEMATICAL FORMULATIONS

Consider the vortex motion induced by an incident solitary wave passing over a blu9 body
submerged in water. The �ow is assumed to be two-dimensional, viscous and incompress-
ible. The �uid velocity vector u=(u; v) is represented by the Cartesian (x; y) components,
respectively. Although the �ow ,eld is governed by the equation of continuity and the
Navier–Stokes equations, it is easier to analyze the streamfunction ( )–vorticity (!) ,eld
for a two-dimensional �ow. The relationships among velocity, streamfunction, and vorticity
are (u; v)= ( y;− x) and != vx−vy, where subscripts imply partial di9erentiation. In order to
describe the transient free-surface geometry and to evaluate boundary conditions accurately,
it is useful to apply the general curvilinear co-ordinates (	(x; y; t); �(x; y; t); �= t) to construct
a boundary conformed grid system. Since the curvilinear co-ordinates are well structured in
data storage and easy to deal with derivatives in formulation, the computer programming for
models with a boundary ,tted system is much simpler than that using the unstructured grids.
Several examples of adopting the curvilinear co-ordinates for the time-dependent free sur-
face �ow are referred [20; 21]. By choosing �uid density , undisturbed water depth H , and
gravitational acceleration g as referred variables in dimensional analysis, the non-dimensional
governing equations in the curvilinear grid system are

∇2!= Re(!� +U!	 + V!�) (1)

∇2 =−! (2)

where the dimensionless parameter Re=(H
√
gH)=� is the Reynolds number with dynamic

viscosity, �, of the �uid. In the above equations, the Laplacian operator ∇2 and the con-
travariant velocity (U;V ) in the (	; �) system are de,ned by

∇2 = g11
@2

@	2 + 2g12
@2

@	@�
+ g22 @2

@�2 + f1 @
@	

+ f2 @
@�

(3)

(U;V ) =
( � − x�y� + y�x�;− 	 + x�y	 − y�x	)

J
(4)

Here g11 = (x2�+y2
� )=J

2, g22 = (x2	+y2
	)=J

2, g12 =−(x	x�+y	y�)=J 2, f1 = {(Jg11)	+(Jg12)�}=J ,
and f2 = {(Jg12)	 + (Jg22)�}=J are geometric coeIcients, and J = x	y� − y	x� is the Jacobian
of transformation. Since the grid is time-dependent, U and V in Equation (4) have additional
terms associated with grid speed (x�; y�) to justify inertial convection of vorticity transport in
Equation (1). Similar justi,cation is also done on the convection of the free-surface conditions,
as described below.
That an incident solitary wave passes over a submerged blu9 body is an initial boundary

valued problem in this analysis. The associated conditions are summarized as follows:

Boundary conditions on the free surface: On y= �(x; t)

!=0 (5a)

Kinematic condition (KC):

 	 + ��x	 = x��	 (5b)
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Dynamic condition (DC):

 	�(Jg12) +  ��(Jg22) +  	Ã+  �B̃+ (u− x�)u	 + (v− ��)v	 + �	 =0 (5c)

with
Ã=−(x�=J )�x	 − (y�=J )�y	; B̃=(x	=J )�x	 + (y	=J )�y	

Solid-surface conditions:

 =  0(=0) (6a)

 � =0 (6b)

!=−g22 �� (6c)

Far upstream and downstream boundary conditions:

 	 =0 (7a)

y	 =0 (7b)

!	 =0 (7c)

Initial conditions: An initial solitary wave is imposed so far away from the blu9 body that
the initial condition of  0 can be obtained by ignoring the �uid viscosity. We apply an incident
solitary wave pro,le of amplitude A0 and celerity C, moving in the positive x-direction with
initial peak centered at x= x0, based on Grimshaw’s third-order formula [22]

�0 =A0 sech
2 X [1− 3

4A0 tanh
2 X + A2

0 tanh
2 X ( 58 − 101

80 sech2 X tanh2 X )] (8)

in which
X =

√
3
4A0(1− 5

8A0 + 71
128A0)(x − x0)

Therefore, the streamfunction on the free surface (say,  0
f ) at t=0 is given by

 0
f =C�0 = (1 + 1

2A0 − 3
20A

2
0 +

3
56A

3
0)�

0 (9)

The initial condition of  0 is then obtained from the numerical solution of the potential �ow
with all associated boundary conditions (9), (6a) and (7a) in a boundary ,tted grid system,
which will be discussed later.

3. NUMERICAL METHOD

3.1. Discretization and solution procedure by uni0ed grid (without re0nement)

In the present study, the vorticity transport equation (1) is discretized by the ,nite analytic
(FA) method, which is to incorporate the analytic solution of the linearized convection–
di9usion transport equation into a discretization expression for calculation. To do that, ,rst
use the nodal values of (U;V ),  	,  � and all geometric coeIcients to linearize Equation (1),
and replace the time derivative !t with the ,rst-order backward di9erence. In order to ,nd the
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VORTEX MOTION DUE TO SOLITARY WAVE 613

unique solution for this linearized equation in a small cell, one also needs to approximate the
cell boundary conditions by exponential-linear functions, which are obtained by interpolating
values of neighboring nodes around the cell. By using superscript indices n and n + 1 to
represent the time levels (n)R� and (n+ 1)R�, respectively, and subscripts E, W, N, S, and
C for the nodes surrounding p, the analytical solution of !n+1

p at the (n+ 1) time level can
be written as

!n+1
p = (CEC!n+1

EC + CWC!n+1
WC + CNC!n+1

NC + CSC!n+1
SC + CNE!n+1

NE + CNW!n+1
NW

+CSE!n+1
SE + CSW!n+1

SW + CpSp)
/(

1 + Cp
Re
R�

)
(10)

where these FA coeIcients are [23]

CEC = e− Eb; CWC =e Eb; CNC =e−"Ea; CSC = e"Ea; CNE = e− −"Ec

CNW = e −"Ec; CSE = e− +"Ec; CSW =e +"Ec

Cp =
tanh  
2 g11p

(1− 2 cosh "Ea); Sp =!n
p
Re
R�

+
1
2
g12p (!n+1

NE +!n+1
SW −!n+1

SE −!n+1
NW )

Ea =
∞∑
m=1

(−1)m+12$m cosh  coth  
[ 2 + $2

m]2 cosh
√
( 2 + $2

m)=%+ "2
; $m =(m− 0:5)'; m=1; 2; : : : ;∞

Eb =
[
1 +

" coth "
 % coth  

(2 cosh "Ea − 1)
]/

(2 cosh  )

Ec = (1− 2 cosh "Ea − 2 cosh  Ea)=(4 cosh  cosh ")

% = g11p =g22
p ;  =−(f1

p − ReUp)=2
√

g11p ; "=−(f2
p − Re Vp)=2

√
g22
p

The application of the FA method overcomes numerical diIculties, such as numerical oscilla-
tions, non-physical damping, etc., caused by inertial convection in Equation (1), for it conveys
most of the physical signi,cance involved in the original partial di9erential equations. This
will be superior to most limiter-based schemes in numerical practice. The conceptual discus-
sion of the one-dimensional FA (exponential) scheme for a convection–di9usion equation is
referred to Patankar’s book [24]. The FA method has been successfully applied to many in-
ternal and external viscous �ow problems without a free surface [25; 26]. In addition to using
the FA method for calculating the ! ,eld in the present study, the second-order ,ve-point
central di9erences are applied to the Poisson equation (2) for solving the  ,eld inside the
�ow region. Because the grid resolution applied for solving  is controlled cautiously so as
to preserve the speci,ed accuracy of our solution, this primitive solver will not introduce a
source of inaccuracy in the present study.
On the boundaries, one su9ers two numerical diIculties in calculation, namely, the

treatment of the free-surface conditions and the determination of the wall vorticity. It is
worthwhile to describe them in detail. For the free-surface boundary conditions, time- and
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Figure 1. Comparison of the free-surface pro,les obtained by the present two-step
scheme (dotted lines); Crank–Nicholson scheme (dashed lines); and the analytic

solution of Grimshaw [22] (solid lines).

�-derivatives discretized with ,rst-order di9erences, and 	-derivatives with the central di9er-
ence of second-order accuracy. Hence, the free-surface DC, Equation (5c), is expressed by
the two-stage form

 n+1
	 −  n

	

R�
(Jg12)∗ +

 n+1
� −  n

�

R�
(Jg22)∗ +  ∗

	 Ã
∗ +  ∗

� B̃
∗ +

(
u∗ − xn+1 − xn

R�

)
u∗	

+
(
v∗ − �n+1 − �n

R�

)
v∗	 + �∗	 =0 (11)

By setting ∗= n and n + 1 in Equation (11) and solving them for  n+1, one obtains the
,rst-stage value  (1) and the second-stage value  (2), respectively. Finally, one gets the free-
surface streamfunction  f by taking the arithmetic average of  (1) and  (2). In a similar
manner, one can also compute the free-surface elevation � from the free-surface KC (5b) by
using the two-stage starred form

�n+1
i − �n

i

R�
x∗	 +  ∗

	 =0 (12)

Actually, the present two-stage treatment of the KC form is identical to the well-known
Crank–Nicholson (CN) scheme in light of the linear essence in the KC. However, for the
non-linear DC, the present scheme rather di9ers from the CN scheme. To see the di9erence,
one compares in Figure 1 the evolved surface pro,les obtained by both schemes for a solitary
wave (of initial amplitude A0 = 0:6) traveling along a uniform channel without friction. It is
easily seen from this ,gure that the numerical result obtained by the present scheme is much
better than that by the CN scheme.
The above inviscid free-surface 1ow coupling consists of  inside the �ow region interacting

with  f and � on the free surface, and consequently, involves an evolving grid system in
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VORTEX MOTION DUE TO SOLITARY WAVE 615

Figure 2. Streamline patterns for a uniform �ow past a circular cylinder: (a) applied grid system; (b)
present numerical solution; (c) experiment of Bouard and Coutanceau [27]; and (d) numerical solution

of Chang and Chern [28].

light of the existence of a moving free surface. On the other hand, the viscous �ow coupling
contains the interior  –! ,eld interacting with the wall vorticity in response to �uid viscosity.
After invoking the second-order central di9erence scheme and the no-slip and impermeable
conditions,  =  0 = 0 and  � =( 1 −  −1)=2=0, respectively, on a solid wall, Equation (6c)
reduces to

!0 =−g22( 1 +  −1 − 2 0)=−2g22 1 (13)

which is of second-order accuracy. Here, subscripts ‘0’, ‘1’ and ‘−1’ denote nodes on the
wall and on its two opposite sides respectively. Because the coupling of  and ! appear in
Equations (1) and (2) and the wall vorticity in condition (13), the iterative process is necessary
to get the convergent solution of them. In order to examine the validity of the present  –!
model, we calculate a uniform �ow passing a circular cylinder at the diameter-based Reynolds
number ReD =550 (=2Re). At this Reynolds number, a laminar boundary layer quickly
thickens along the curved wall and ,nally separates from wall surface to form a symmetric
vortex bubble behind the body. Due to the symmetry, a half of �uid domain is enough for the
numerical study. Figure 2(a) shows the applied mesh and Figure 2(b) exhibits the calculated
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Figure 3. Key sketch of the decomposed regions and their boundaries.

streamlines. The recirculating �ow is excellently consistent with the experiment by Bouard
and Coutanceau [27] (in Figure 2(c)) and the numerical result by Chang and Chern [28] (in
Figure 2(d)). The application of this model to the viscous �ow with a free surface was also
studied in a uni,ed grid system by the authors [9].
The upstream and downstream boundary conditions are simply treated by the ,rst-order

one-sided FD schemes. From numerical experiments [9], this treatment does not found to
introduce the false numerical re�ection if both boundaries are far enough away from the
body.
To summarize the solution procedure in the uni,ed grid system, one ,rst calculates  f from

the two-stage DC, Equation (12) and !0 from Equation (13) to obtain the converged  –!
,eld inside the �ow region by using the FD and FA methods through iteration. One then
updates the free-surface elevation � from the two-stage KC, Equation (12), and regenerates
the grid system to conform the free surface and other boundaries. In this new grid system,
one calculates again the  –! ,elds on the boundary and within the �ow region, as described
above. After iterating the solution of  , ! and � until the grid system and the �ow ,eld are
all converged, one proceeds with the calculation to the next time step.

3.2. Mesh generation and solution procedure with grid re0nement

Overall grid structure consists of a hybrid of three grid systems in which the coarse base
system globally covers the background domain and the two locally re,ned ones wrap around
the blu9 body and the free surface, as shown in Figure 3. We ,rst construct the base grid
systems to conform the free surface, body faces, and upstream and downstream boundaries.
All �-lines are uniformly distributed and are kept vertical and ,xed all the time for simplicity,
while some 	-lines can be deformed with time. Then select some base grid lines to enclose
the interested regions near the body and near the free surface for further re,nement. Hence,
all of three grid systems are ,tted with their regional boundaries. These boundary ,tted grids
are constructed by using either algebraic generation (AG) or elliptic generation (EG) methods,
depending on the boundary con,guration. The AG grid is obtained by interpolating nodes,
linearly or exponentially distributed along grid-lines, between the upper and lower bounds
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VORTEX MOTION DUE TO SOLITARY WAVE 617

Figure 4. Typical grid con,guration for calculating a solitary wave passing over a circular cylinder
with local grid re,nement at time t=15.

of the region. On the other hand, the EG grid is obtained from the iterative solution of the
Laplace equations ∇2x=0 and ∇2y=0 with the Dirichlet boundary conditions, similar to the
solution procedure for  . In practice, the AG grid generation is more economic in computing
than the EG grid. The employment of the EG grid is only for the re,ned region around the
semi-circular cylinder, as shown typically in Figure 4. Remind that the present grid systems are
evolved with the free surface and consequently, the relative grid motion will a9ect vorticity,
streamfunction, and the free-surface quantities node by node through Equations (1), (2), (5b)
and (5c). The fully iterative procedure is therefore necessary at every time step to get a
convergent solution of the �ow ,eld and grid systems, which means that the solution is
time-accurate for both the free-surface elevation and the related �ow ,eld. The numerical
treatment for these three grid regions (refer to Figure 3) are discussed as follows:

Region I (Re0ned grid system near the blu2 body for viscous 1ow coupling): Re,nement
is carried out by adding nodal points on the regional boundaries and then by generating grids
inside the region by using the AG or the EG method. This grid system is always stationary
to save computing time. The FA method for ! with the FD scheme for  is carried out for
solving the complete  –! equations by a ,ner mesh.

Region II (Base grid system): The initial base grid is uniformly distributed by the AG
method within the global numerical domain. Later it is allowed only the upper part of 	-grids
to move with the free surface, but keeps the lower part ,xed all the time. The ,ve-point
central FD method is used to solve the Laplace equation for  by the base (coarse) mesh
under the inviscid assumption.

Region III (Re0ned grid system near the free surface for free-surface 1ow coupling): This
region contains a layer enclosed by two uppermost base-grid lines (	-lines) at the free surface.
The grid system is re,ned only in one way along the free surface. The grid in this region
moves with the free surface. Under the inviscid �ow consideration, the two-stage FD scheme
for both  and � is employed to solve the fully non-linear free-surface conditions by the ,ner
grid.
In addition, it is required to patch the two joint solutions across the overlap interface (with

thickness of one coarse grid size) so that the continuity of �ow and grid variables is satis,ed
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there. As referred to in Figure 3, there are two procedures used to perform the patch across the
interface. The coarser-to-,ner grid procedure is generally called interpolation while the ,ner-
to-coarser grid procedure is called restriction. For example, at the overlap interface between
Regions II and III (interface II–III in brief), one can interpolate the inner boundary values of
 f−1 and yf−1 for Region III from the base-grid solution by third-degree polynomials. After
solving the free-surface conditions with these interpolated values, the solution in Region III
is restricted to the free-surface values of  f and �, by simply taking the nodal values at a
coarse grid. These are the outer boundary conditions necessary for seeking the solution of
 in Region II and for regenerating the new grid systems. The patch by both interpolation
and restriction can be proceeded further through iteration until the solution in all regions is
converged.
A similar patching technique can be applied to the interface I–II except now the grid in

Region I is ,xed with time. The employment of a thoroughly ,xed ,ner mesh system in
Region I improves both accuracy and eIciency in resolving the salient features of vortex
�ow behind the body. Again, a bilinear interpolation method is performed by patching the
interfacial solution from the base-grid region, Region II, to the locally re,ned grid region,
Regions I. Note that the only patched quantity needed is  (i.e.,  b and  b+1) since we
apply !=0 and a ,xed grid at the interface I–II. It will be seen later in this paper that this
application indeed saves a lot of computing time without the penalty for accuracy of the �ow
solution.
The solution procedure in the locally re,ned grid system slightly di9ers from that in the

uni,ed grid. First, one has to interpolate the interfacial values of  f−1, yf−1, and  b+1 as
the boundary values for the re,ned grid Regions III and I. Using the FD or the FA method
with the ,ner grids, one gets  f from the DC in Region III, and the  –! ,eld in �ow
Region I. After restricting  f and  b, one can solve the inviscid solution of  in Region
II through iteration of the patch procedures for both the free-surface coupling in Region
III and the viscous �ow coupling in Region I. The converged values of  f are used to
update and, in consequence, to regenerate the two grid systems in Regions II and III. Again,
one still necessarily repeats the whole solution procedures described above. Several iterations
are necessary to get enough accuracy in the �ow solution and grid systems at every time
step.

3.3. Particle tracing technique

In order to compare with the experimental visual result, it is necessary to introduce parti-
cle tracers in the numerical result to imitate the �ow motion. During tracing the trajectory
of particles, we need to integrate the displacement of particles with respect to time through
interpolation of their instantaneous velocities. In computational �uid dynamics, the algorithm
of the particle tracing method (PTM) [29] is often carried out for a ,xed-grid system in
the physical space by the area-weighting scheme. Instead, for a moving boundary problem,
the inverse PTM is so developed that the PTM is performed in the numerical domain
and the trajectory of particles is then mapped inversely to the related physical space. This
IPTM algorithm has the following advantages for the present grid system: (1) the procedure
to ,nd the marker location in the ,xed numerical domain is simple and eIcient, without
invoking a searching procedure necessary; (2) it is convenient to estimate the other physical
quantities of interest at the particle position by the common weighting factors in a cell; and
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(3) the accuracy of the tracer movement is automatically justi,ed along with the applied grid
con,guration as needed.

4. RESULT AND DISCUSSION

In the present study, two typical blu9 bodies are considered, namely, a rectangular block
with length 2H by height 0:5H , and a semicircular cylinder with radius of 0:5H (here H is
the undisturbed water depth). Flow simulations by either numerical or experiment work are
all performed at the Reynolds number Re=82000. In numerical calculation, a time step of
R�=0:1 is employed. Streaklines, streamlines, and equivorticity lines are tracked to investigate
the vortex motion. First, a solitary wave starts from x0 =−15 to incident upon the rectangular
block, as described the ,rst blu9 body above. The total computational domain is con,ned
within −306x630. To illustrate the sensitivity of mesh resolution on the transient behavior
of the numerical solution, the free-surface pro,les and streamline contours are presented at
t=17 in Figure 5. Those results are obtained from three various grid con,gurations. The
,rst two are of uni,ed grids in the viscous �ow model, while the other uses locally re,ned
grids in the hybrid inviscid–viscous �ow model. As noted in the legend, Rx, Ry represent
the approximated spatial grid sizes for the background grid, Rxb, Ryb for the blu9 grid
(Region I), and Rxf for the free-surface grid (Region III). Grid nodes are also plotted as
dots for convenience of comparison. The ,rst result shown in Figure 5(a) is calculated by
121× 11 (coarse uni,ed) grid, and the second result for 601× 41 (,ne uni,ed) grid is shown
in Figure 5(b). In Figure 5(c), there is a coarse background mesh of 121× 11 grid with
two locally re,ned systems of 61× 29 grid around the blu9 body and 601× 2 grid near the
free surface. Here the uni,ed grid result in Figure 5(b) is taken as the referred solution for
comparison, because this result has the best resolution among the three and it does not have
any detectable change for further grid re,nement. The improvement of the locally re,ned
grid result in Figure 5(c) is signi,cant, especially as one compares the vortex bubble and the
free-surface pro,le with Figures 5(a) and 5(b). The capability of using this locally re,ned grid
to resolve the physical detail is therefore demonstrated. Furthermore, the location of the grid
interface I–II is chosen to be away from the body so that the viscous e9ect is not important
to the solution in Region II. Hence, the inviscid–viscous hybrid scheme applied here would
avoid serious penalty for accuracy of the numerical result.
The unsteady vortex pattern behind the block is visualized much easier by the dyeline than

by the streamline. The evolution of tracked dyelines from the experiment and the correspond-
ing numerical results are demonstrated in Figure 6. The upper picture from the experimental
observation [9] was taken in a water �ume 12m in length, 40cm in depth and 40cm in width.
The �ow condition was set up to the water depth H ∗=8 cm, and an initial solitary wave of
A0 = 3:2cm (i.e., A0 = 0:4) with a rectangular cylinder, of sectional dimension 16cm in length
and 3:98 cm in height, mounted on the �ume bottom. In the present study, the dyeline is
also simulated numerically by using the IPTM algorithm. The calculation with the uniformly
coarse grid (Figure 6(a)) requires about 22 iterations to get the converged solution for one
time step. This will take 3 s CPU for each time step on a HP 735-100 workstation. The time
required for the uniformly ,ne grid calculation (Figure 6(b)) is 293 s CPU with 94 iterations
for each time step whereas the locally re,ned solution (Figure 6(c)) requires 21 s CPU, a
90 per cent reduction in CPU time to the former. Since both solutions has almost the same
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Figure 5. Partial result of grid nodes and streamlines at time t=17 by (a) coarse grid; (b) ,ne grid;
(c) locally re,ned grid, in which (Rx, Ry) is the base-grid size, and Rxf and (Rxb, Ryb) are re,ned

grid sizes on the free surface and near the body, respectively.

accuracy in good agreement with the experimental observation, the application of the locally
re,ned-grid calculation is, therefore, the most preferable.
A semicircular cylinder is the second example in the analysis. Now consider an incident

solitary wave of the same amplitude A0 = 0:4 starting in motion at x0 =−10, a distance of 10
times water depth from the center of cylinder. The partial view of the hybrid grid has already
been shown in Figure 4. The base grid has 81× 11 nodes with two grid re,nements, 81× 71
around the body and 401× 2 along the free surface. The re,ned grid around the cylinder is
a C-type mesh system by the EG method. The grid in the blu9 body region has been re,ned
locally by two varieties, namely, 41× 36 nodes and 81× 71 nodes, to compare each other.
Both results show no large di9erence in the �ow patterns. The solution of 81× 71 nodes (with
R�=0:1) is presented only for the sake of demonstration on the dedicatory �ow topology.
The evolution of streamlines (on the left column) and equi-vorticity contours (on the right)
near the cylinder is shown in Figure 7. The simulations are eventually terminated at t=15.
The streamline jitter at the interface between Regions II and III at t=15 is related to the
discontinuous resolution among the linking grids but not to the scheme error.
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Figure 6. Comparison of streaklines with �ow visualization (the upper most ,gure): (a) coarse grid;
(b) ,ne grid; (c) locally re,ned grid (where ITER and CPU are iteration number and CPU time

respectively, required typically in one time step).

As the solitary wave encounters the cylinder, two wave trains, one for transmission and the
other for re�ection, are generated. It is noted that the re�ection from a semicircular cylinder
has much smaller amplitude than that from a rectangle. Complex �ow structure is built up
during the wave scattering process and is closely related to the wave induced �ow separating
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Figure 7. Sequential results of streamlines (left) and equivorticity lines (right) around a semicircular
cylinder at times t=9, 10, 11,13 and 15.

from the surface of the blu9 body. The vortex structure on the semicircular cylinder is clearly
seen in Figure 7. When the wave transmits across over the cylinder, the separation vortex
bubble is always kept attached on the rear surface of the cylinder in the analysis. It grows up
as the time elapses to increase its strength during the wave-structure interaction. At t=13∼ 15,
the primary vortex is swelling as the transmitted wave moves downstream for a distance apart
from the cylinder. At that instance t=15, the backward �ow resulting from a small, re�ected
wave then carries the swelling vortex a little upstream. This vortex motion is di9erent from
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that caused by the rectangular block, as observed previously in Figure 5. Between both, the
most distinct phenomenon is that the separation points slip on the surface of semicircle, but
this never happens to the rectangle due to the separation points being almost ,xed at the rear
convex corner during the vortex growing process.

5. CONCLUSIONS

By using the locally re,ned grids in our analysis, a hybrid numerical model for the
streamfunction–vorticity ,eld was developed with the inviscid–viscous �ow schemes. An in-
cident solitary wave passing over two submerged blu9 bodies were investigated separately
in this paper. The induced vortex motion and the free-surface pro,le were also illustrated
to see the e9ect of body shape on the phenomena. An evolving curvilinear grid to conform
the transient free surface and other boundaries was employed. The results showed that the
hybrid model substantially increases the computer eIciency and the solution accuracy. The
impressed features during the solitary wave �ow interaction with the obstacle were observed
using the IPTM technique. These features included the vortex motion and some related �ow
patterns were discussed brie�y.
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